Decidability of Identity-free Relational Kleene Lattices

نویسندگان

  • Paul Brunet
  • Damien Pous
چکیده

Families of binary relations are important interpretations of regular expressions, and the equivalence of two regular expressions with respect to their relational interpretations is decidable: the problem reduces to the equality of the denoted regular languages. Putting together a few results from the literature, we first make explicit a generalisation of this reduction, for regular expressions extended with converse and intersection: instead of considering sets of words (i.e., formal languages), one has to consider sets of directed and labelled graphs. We then focus on identity-free regular expressions with converse—a setting where the above graphs are acyclic—and we show that the corresponding equational theory is decidable. We achieve this by defining an automaton model, based on Petri Nets, to recognise these sets of acyclic graphs, and by providing an algorithm to compare such automata.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equational theory of Kleene lattices

Languages and families of binary relations are standard interpretations of Kleene algebras. It is known that the equational theories of these interpretations coincide and that the free Kleene algebra is representable both as a relational and as a language algebra. We investigate the identities valid in these interpretations when we expand the signature of Kleene algebras with the meet operation...

متن کامل

And Damien Pous A

Kleene algebra axioms are complete with respect to both language models and binary relation models. In particular, two regular expressions recognise the same language if and only if they are universally equivalent in the model of binary relations. We consider Kleene allegories, i.e., Kleene algebras with two additional operations and a constant which are natural in binary relation models: inter...

متن کامل

Petri Automata

Kleene algebra axioms are complete with respect to both language models and binary relation models. In particular, two regular expressions recognise the same language if and only if they are universally equivalent in the model of binary relations. We consider Kleene allegories, i.e., Kleene algebras with two additional operations and a constant which are natural in binary relation models: inter...

متن کامل

On the Complexity of the Equational Theory of Relational Action Algebras

Pratt [22] defines action algebras as Kleene algebras with residuals. In [9] it is shown that the equational theory of *-continuous action algebras (lattices) is Π 1−complete. Here we show that the equational theory of relational action algebras (lattices) is Π 1−hard, and some its fragments are Π 1−complete. We also show that the equational theory of action algebras (lattices) of regular langu...

متن کامل

Kleene Algebra with Tests: Completeness and Decidability

Kleene algebras with tests provide a rigorous framework for equational speci cation and veri cation They have been used success fully in basic safety analysis source to source program transformation and concurrency control We prove the completeness of the equational theory of Kleene algebra with tests and continuous Kleene algebra with tests over language theoretic and relational models We also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015